On Plane and Space Curves

Mentor: Daniel Restrepo Montoya

Student: Daniel Naves

What is a curve?

Let $I \subset \mathbb{R}$ be an open interval, not necessarily bounded. A function $\alpha: I \rightarrow \mathbb{R}^{3}$ is a curve if it is a C^{∞} map, i.e., if it has derivatives of all orders on l.
We say that α is a plane curve if there exists a plane $P \subset \mathbb{R}^{3}$ such that $\alpha(I) \subset P$.
A space curve is a curve whose points do not necessarily all lie on a single plane.

Figure 1: A plane curve with a self-intersection

Arc Length

One may seek to study the length of the trace of α over some compact interval $[a, b] \subset I$. A natural approach is to define a partition $P=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}$ of $[a, b]$ and approximate the length of $\alpha([a, b])$ with the sum

$$
\sum_{i=1}^{n}\left|\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right)\right|
$$

It can be shown that if $|P|=\max _{1 \leq i \leq n}\left\{\left|t_{i}-t_{i-1}\right|\right\}$, then

$$
\lim _{|P| \rightarrow 0}=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t
$$

which suggests the definition of $\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t$ as the length of α from a to b.

Parametrization by Arc Length

We say that α is a regular curve if $\alpha^{\prime}(t) \neq 0$ for each $t \in I$, i.e., if the tangent line of α is well-defined at each of its points. For any $t_{0} \in I$, we can define the arc length function from t_{0}, given by

$$
S(t)=\int_{t_{0}}^{t}\left|\alpha^{\prime}(u)\right| d u
$$

We say that α is parametrized by arc length (p.b.a.l) if $\left|\alpha^{\prime}(t)\right|=1$ for each $t \in I$, so that $S(t)=t-t_{0}$. . Since $S^{\prime}(t)=\left|\alpha^{\prime}(t)\right|$, the inverse function theorem tells us that if α is regular, then S is increasing and open. Hence if $J=S(I)$, then $S: I \rightarrow J$ is a diffeomorphism between open intervals.

Let $\beta: J \rightarrow \mathbb{R}^{3}$ be the reparametrization of α given by $\beta=\alpha \circ S^{-1}$. It follows that

$$
\beta^{\prime}(s)=\alpha^{\prime}\left(S^{-1}(s)\right)\left(S^{-1}\right)^{\prime}(s)=\frac{\alpha^{\prime}\left(S^{-1}(s)\right)}{\left|\alpha^{\prime}\left(S^{-1}(s)\right)\right|}
$$

so that $\left|\beta^{\prime}(s)\right|=1$ for each $s \in J$. Therefore, any regular curve admits a reparametrization by arc length.
Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a curve p.b.a.l, and let the tangent unit vector $\alpha^{\prime}(s)$ be denoted by $T(s)$. Let the normal vector of α at s be given by $N(s)=J T(s)$, where J is the linear transformation
corresponding to a 90 -degree counter-clockwise rotation. From the equalities $|T(s)|^{2}=|N(s)|^{2}=1$ and $\langle T(s), N(s)\rangle=0$, we can conclude, by taking derivatives, that
$\left\langle T^{\prime}(s), T(s)\right\rangle=\left\langle N^{\prime}(s), N(s)\right\rangle=\left\langle T^{\prime}(s), N(s)\right\rangle+\left\langle T(s), N^{\prime}(s)\right\rangle=0$.

Observe that $T^{\prime}(s)$ has the same direction as $N(s)$, so that, for each $s \in I$, we have that $T^{\prime}(s)=k(s) N(s)$ for some $k(s) \in \mathbb{R}$. The number $k(s)$ is called the curvature of α at s.
We have constructed, for each $s \in I$, a positively-oriented orthonormal basis $\{T(s), N(s)\}$ for \mathbb{R}^{2}. This pair of vectors is called the oriented Frenet dihedron of α at s. The equations

$$
T^{\prime}(s)=k(s) N(s) \text { and } N^{\prime}(s)=-k(s) T(s)
$$

are called the Frenet equations of the curve α.

Figure 2: The evolution of the Frenet dihedrons unveil the geometrical features of the curve

Fundamental Theorem of the Local Theory of Plane Curves

Let $k_{0}: I \rightarrow \mathbb{R}$ be a differentiable function defined on an open interval $I \subset \mathbb{R}$. Then, there exists a plane curve $\alpha: I \rightarrow \mathbb{R}^{2}$ p.b.a.l. such that $k_{\alpha}(s)=k_{0}(s)$ for every $s \in I$, where k_{α} is the curvature function of α. Moreover, if $\beta: I \rightarrow \mathbb{R}^{2}$ is another plane curve p.b.a.l. with $k_{\beta}(s)=k_{0}(s)$, for all $s \in I$, then there exists a direct rigid motion $M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\beta=M \circ \alpha$.

Space curves

We can, as we did for plane curves, associate a positively oriented, orthonormal basis of \mathbb{R}^{3} to each point of a space curve. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve p.b.a.l and $T(s)=\alpha^{\prime}(s)$. Since $|T(s)|^{2}=1$ for each $s \in I$, it follows that $\left\langle T^{\prime}(s), T(s)\right\rangle=0$ for each $s \in I$. We now define the curvature k of α at s by $k(s)=\left|T^{\prime}(s)\right|$. Unlike with plane curves, the definition forces the curvature to be non-negative at each $s \in I$.
Assume that k is strictly positive. Then one may consider the vector

$$
N(s)=\frac{T^{\prime}(s)}{\left|T^{\prime}(s)\right|}=\frac{1}{k(s)} T^{\prime}(s)
$$

From previous reasoning, we see that $\langle T(s), N(s)\rangle=0$ for each $s \in I$. Hence, in order to construct our orthonormal basis, it suffices to define a third vector $B(s)=T(s) \times N(s)$, where \times denotes the vector product of Euclidean three-space. We call this vector the binormal vector of the curve α at s.

Torsion

From the definition of B, we can conclude that

$$
B(s)=T^{\prime}(s) \times N(s)+T(s) \times N^{\prime}(s)=T(s) \times N^{\prime}(s)
$$

since $T^{\prime}(s)$ and $N(s)$ have the same direction. Hence

$$
\left\langle B^{\prime}(s), T(s)\right\rangle=\operatorname{det}\left(T(s), N^{\prime}(s), T(s)\right)=0 .
$$

Furthermore, $|B(s)|^{2}=1$, so that $\left\langle B^{\prime}(s), B(s)\right\rangle=0$. This tells us that $B^{\prime}(s)$ has no components in the directions of $T(s)$ or $B(s)$. It follows that

$$
B^{\prime}(s)=\tau(s) N(s),
$$

with $\tau(s) \in \mathbb{R}$ for each $s \in I$. The number $\tau(s)$ is called the torsion of the curve α at s.

Finally, we study the derivative of the normal vector: From the equalities $|N(s)|^{2}=1,\langle N(s), T(s)\rangle=0$, and $\langle N(s), B(s)\rangle=0$, it follows that

$$
\begin{array}{r}
\left\langle N^{\prime}(s), N(s)\right\rangle=0, \\
\left\langle N^{\prime}(s), T(s)\right\rangle=-\left\langle N(s), T^{\prime}(s)\right\rangle=-k(s), \\
\left\langle N^{\prime}(s), B(s)\right\rangle=-\left\langle N(s), B^{\prime}(s)\right\rangle=-\tau(s)
\end{array}
$$

so that

$$
N^{\prime}(s)=-k(s) T(s)-\tau(s) B(s)
$$

for each $s \in I$. The three equations we have deduced,

$$
\begin{array}{r}
T^{\prime}(s)=k(s) N(s), \\
N^{\prime}(s)=-k(s) T(s)-\tau(s) B(s), \\
B^{\prime}(s)=\tau(s) N(s)
\end{array}
$$

are the Serret-Frenet equations of the curve α.

Fundamental Theorem of Local Theory of Space Curves

Let $I \subset \mathbb{R}$ be an open interval and let $k_{0}, \tau_{0}: I \rightarrow \mathbb{R}$ be two differentiable functions with $k_{0}(s)>0$, for each $s \in I$. Then there exists a curve $\alpha: I \rightarrow \mathbb{R}^{3}$ p.b.a.l. such that $k_{\alpha}(s)=k_{0}(s)$ and $\tau_{\alpha}(s)=\tau_{0}(s)$ for each $s \in I$, where k_{α} and τ_{α} are the curvature and torsion functions of α. Furthermore, α is unique up to a direct rigid motion of Euclidean space \mathbb{R}^{3}.

Figure 3: The triplet of vectors associated with each point s of the curve is called the Frenet trihedron of α at s.

